De cómo la UE redujo sus gases de efecto invernadero en 2014

Ante el comunicado de prensa de Eurostat al respecto de la reducción de un 5% en las emisiones de CO2 de la Unión Europea [UE] debidas al consumo energético en 2014 respecto de 2013, y vista la repercusión mediática del mismo así como la tendencia a atribuir el efecto a la eficiencia energética, he decidido asesorar a Ecologistas en Acción formulando lo siguiente:

  1. METODOLOGÍA. Las estimaciones provisionales de emisiones de Eurostat son avances basados en sus estadísticas mensuales sobre el consumo final interior de productos energéticos de origen fósil, exclusivamente, en los países de la UE. No incluyen las emisiones por incineración de residuos u otros focos, ni las emisiones indirectas por la transformación de combustibles importados. Tampoco cuentan con coeficientes de conversión actualizados en función del poder calorífico de cada fuente y del rendimiento de las centrales de combustión, y evalúan solamente el dióxido de carbono [CO2], que supone el 80% de las emisiones de gases de efecto invernadero [GEI]. En general, las sumas mensuales de consumos suelen aparecer subestimadas y estimaciones pasadas se han revelado demasiado optimistas ante la realidad.
  2. VARIABLES. Puesto que varios factores como las condiciones climáticas, el crecimiento económico, el tamaño de la población, el transporte o las actividades industriales tienen un efecto importante en la demanda energética, así como en menor medida los precios y tasas de la energía y las medidas de eficiencia energética, es esencial comparar estas variables con los consumos en 2013 y 2014 antes de aventurarse a atribuir las disminuciones a cualquiera de ellas. Evidentemente, se habrá de focalizar el análisis en los países con mayores consumos y emisiones con el fin de sacar conclusiones más certeras. Esos países son Alemania, Reino Unido, Francia, Italia, Polonia, España y Países Bajos.
  3. HISTORIA. Según los datos de 2012 completos y consolidados de la Agencia Europea del Medioambiente, la energía fue la responsable del 77% de las emisiones de gases de efecto invernadero en la UE-28. Las emisiones de los sectores de la edificación (vivienda y servicios), muy variables en función de la climatología, supusieron un 14%. Los mayores sectores emisores fueron la industria energética (30%), que ha reducido sus emisiones absolutas un 12% respecto de 2007, y el transporte (19%), en que han bajado un 10% en el mismo período. Hasta la crisis bancaria, el aumento de GEI en ambos sectores anulaban o socavaban los efectos de la eficiencia en otros como manufactura, construcción y procesos industriales, o de la reducción de actividad en la agricultura. Podemos decir que, desde 2008 y hasta el momento, es la mala salud de esta macroeconomía del crecimiento -concebida sobre el consumo energético masivo- y sus restricciones de gastos la que facilita las disminuciones de emisiones.
  4. EFICIENCIA. Es innegable que en la Unión Europea se han promovido programas de eficiencia y reducción de GEI, tanto en la intensidad energética como en las emisiones por unidad energética y por unidad económica. No obstante, difícilmente una reducción del 5% de las emisiones energéticas de CO2 en un solo año puede deberse a las citadas mejoras, con un índice máximo en la historia reciente inferior al 3% en la reducción conjunta del ratio de todas las emisiones de efecto invernadero por unidad energética [fig.1] contando todos los sectores, y poco mayor del 4% más concretamente en los edificios [fig.2] o extraordinariamente en la industria. En lo que respecta al consumo de energía primaria por unidad final de energía, el panorama de la UE-28 es más bien desolador, al no haber mejorado la eficacia en la transformación de las fuentes.
Fig.1

Fig.1. Emisiones de GEI por unidad de energía final consumida. Todos los sectores. UE-28

Fig.2

Fig.2. Emisiones de GEI por unidad de energía final consumida. Sector residencial-servicios. UE-28

  1. CIRCUNSTANCIAS. El mayor descenso relativo anual (-7%) de los gases de efecto invernadero generados en la UE-28 se produjo en 2009, coincidiendo con una caída (-4% a precios constantes) del Producto Interior Bruto [PIB] por habitante y con una contracción (-6%) de la demanda energética final a pesar de aumentar (+2%) los grados-día de calefacción. En 2011, las emisiones habían disminuido también en parámetros interanuales (-3%) tras un repunte en 2010, casi en paralelo con el consumo energético (-5%) a pesar del alza (+2%) de la Renta per Capita [RpC]; sin embargo, el ratio de emisiones por unidad de energía consumida había crecido (+2%), resultado que eliminaba la hipótesis de la eficiencia energética. El año 2014 no se encuentra en un caso similar al de 2009, puesto que el PIB de 2014 ha sido un 1% superior al de 2013, sino más parecido a 2011. Sólo se puede explicar por la meteorología.
  2. RAZONAMIENTO. En efecto, en un continente relativamente frío la demanda de calefacción de los edificios no es despreciable. En el estudio de los parámetros que inciden principalmente en las emisiones y el consumo energético puede hallarse más paralelismo con las variaciones de los grados-día de calefacción que con las variaciones del PIB por habitante [fig.3]. Cuando apenas varían los grados-día, como en 2000, 2005, 2007 y 2009, sería la evolución de la renta per capita la que marcaría la deriva del consumo energético y de las emisiones de GEI. Este parece ser el caso general salvo la particularidad de 2006, cuando el alza de la RpC atenuó el efecto del declive de la demanda de calefacción. Tal fenómeno resulta patente dado que el consumo energético de los edificios, representado por el de los sectores Residencial y Servicios, supone el 40% del total de la energía final; en coherencia, la fidelidad entre los grados-día y sus curvas de energía final y emisiones es manifiesta [fig.4]. En lo que atañe al sector Industria, consumidor del 25% de la energía, la evolución queda más acoplada al PIB por habitante.
Fig.3

Fig.3. Variaciones interanuales en algunos factores energéticos. Todos los sectores. UE-28

Fig.4

Fig.4. Variaciones interanuales en algunos factores energéticos. Residencial y servicios. UE-28

  1. CLIMA. Se da la circunstancia de que 2014 ha sido el año más cálido registrado en Europa e investigaciones independientes entre sí han llegado a la conclusión de que el cambio climático ha contribuido significativamente a ello. Las observaciones indican que la media europea de temperaturas atmosféricas de enero a diciembre de 2014 superó en casi 0,9 grados centígrados -ºC- el promedio de 1981 a 2010, cuando la media de 2013 presentaba una anomalía cercana a +0,4 ºC [fig.5]. Mientras que el verano resultó normal, lo que posibilitó no aumentar el consumo de aire acondicionado en la franja meridional, el invierno fue el tercero más cálido desde 1950 y la primavera, la más calurosa, con la consiguiente influencia en la reducción de consumo de calefacción en las bandas central y septentrional del continente.
Fig.5

Fig.5. Media de temperaturas anuales en Europa respecto al promedio de 1981-2010 (EURO4M)

  1. HIPÓTESIS. Si todo lo anterior es cierto, debería darse una correlación entre las temperaturas invernales suaves y la bajada de fuentes finales normalmente empleadas en calefacción. Estas fuentes son en su mayoría el gas natural y la electricidad. Consecuentemente, las emisiones habrían de seguir una curva afín.
  2. OBSERVACIÓN. Alguien tenía que realizar la ardua tarea de estimar las temperaturas medias mensuales de 2013 y 2014. He obtenido las de cinco países representativos por el consumo y las emisiones -UE-5- mediante cierto número de estaciones, como Alemania (DE:10), España (ES:10), Francia (FR:10), Italia (IT:10) y Reino Unido (UK:8) con los datos ofrecidos por el servicio GISS de la NASA y el servicio NCDC de la NOAA. Los registros han sido elegidos de manera que representaran repartición norte/sur, interior/litoral, baja/alta altitud, o influencia oceánica/continental. En casos de no disponibilidad de algún dato, he recurrido a atribuirlo por asimilación matemática conforme a observaciones cercanas y a la curva de tendencia anual. Las observaciones permiten establecer, en función de los contrastes interanuales hallados, dos bloques entre los países representativos: Los del Norte (Alemania, Francia y Reino Unido) y los del Sur (España e Italia). Ciertamente, en todos ellos se observa una notable suavidad térmica de 2014 respecto de 2013 en los meses de enero a abril y noviembre, pero la diferencia es más marcada en los territorios del norte, lo cual habrá llevado a importantes economías en calefacción. En los territorios del sur, con menos necesidad de caldeo, la variación no resulta tan significativa. Al mismo tiempo, julio y agosto de 2014 fueron menos cálidos que los del año precedente, lo cual habrá redundado en menor gasto meridional en refrescamiento [fig.6]. A continuación, hemos elaborado un cálculo simplificado de grados-día mensuales de calefacción en base 18 ºC, aplicando la diferencia con la temperatura media mensual a todos los días del mes [fig.7]. Los tres países del Norte habrían pasado en promedio de 2.900 a 2.400 grados-día anuales (-18%). Los dos del Sur, de 1.400 a 1.100 GDA (-20%).
Fig.6

Fig.6. Media de temperaturas mensuales 2013 y 2014 por agrupaciones de países

Fig.7

Fig.7. Grados día mensuales 2013 y 2014 (base 18 ºC), simplificados, por agrupaciones de países

  1. COMPILACIÓN. Procedí a recopilar para cada país los consumos internos mensuales por fuentes de energía publicados por Eurostat. En lo que respecta al consumo de carbón, he seleccionado las hullas y antracitas por un lado y los lignitos, por otro. Durante 2014 se utilizó en el conjunto de la UE un 8% menos de hullas y antracitas que en 2013; sin embargo, mientras Francia, Italia y Reino Unido economizaban conjuntamente 19,1 millones de toneladas [Mt], Alemania y España aumentaban en 2,8 Mt. Los lignitos se redujeron un 3% en los veintiocho, cargando Alemania con prácticamente la mitad de las 11,2 Mt de diferencia, principalmente no suministradas a centrales termoeléctricas. Según los recuentos de petróleo, el uso de crudo se mantuvo en la UE-28 y disminuyó un 2% en la UE-5, lo que supone casi 8,2 Mt. Por cuanto corresponde al consumo de gas natural, en la UE-28 se registró un 11% menos en 2014, tanto en los usos térmicos como en los eléctricos. Finalmente, la generación de electricidad descendió un 3% en la UE-28 y en la UE-5. En este escenario, el PIB de la UE-28 y de la UE-5 ascendió un 1% de media, desde el estancamiento de Francia e Italia hasta el crecimiento de Reino Unido (+3%) y Alemania (+2%). Acerca de los precios a consumidores finales, en promedio el gas natural subió un 2% para los clientes domésticos tipo mientras que bajó un 6% para los industriales, la electricidad resultó un 2% más cara a los hogares y un 2% menos a las industrias tipo y con una caída del 9% del coste de importación del crudo, los productos petrolíferos se abarataron entre un 4 y un 6%.
  2. ANÁLISIS. No pretendo aquí recalcular las emisiones de CO2 debidas a la combustión de combustibles fósiles, sino mostrar en qué medida unas y otros pueden estar sujetas a distintas variables. Así, he confrontado el consumo no eléctrico de antracita y lignito, derivados principalmente a hornos industriales, con el Índice de Producción Industrial [IPI]. He estudiado la influencia de los precios de importación sobre la demanda de petróleo crudo, primordialmente destinado a combustibles para el transporte. Me he ceñido a los usos térmicos del gas natural a fin de hacer comparaciones coherentes con las necesidades teóricas de calefacción. He cotejado, además, la estacionalidad de la demanda eléctrica y el efecto de las precipitaciones frente al consumo de combustibles fósiles en centrales térmicas convencionales. Considero válida para conclusiones la muestra seleccionada UE-5, pues abarca tres áreas climáticas europeas (continental, oceánica y mediterránea), alcanza el 69% del PIB de la UE-28, engloba el 63% de sus emisiones de CO2 debidas a la energía y comprende una amplia mayoría de sus consumos energéticos (55% de hulla-antracita, 42% de lignito, 58% de crudo, 67% de gas natural, 64% de electricidad).
    • Carbón. Siendo una fuente marginal para calefacción, las tendencias de consumo interior de carbones para usos no eléctricos no siguen las variaciones climáticas. La serie mensual del lignito se asemeja a la gráfica mensual del IPI de todos los sectores excluida la construcción, mientras que la serie de hullas-antracitas transcurre más pareja a la evolución del IPI de los sectores minería y la manufactura.
    • Petróleo. Dado que sólo alrededor del 10% del consumo interior se debe a los sectores residencial y servicios, la tendencia respecto a la climatología es, a primera vista, inversa a la calefacción, creciendo el transporte en los meses más cálidos. Se observa un menor consumo de crudo entre abril y julio de 2014 con mayores precios de importación, y un aumento del consumo desde agosto de 2014 coincidiendo con la bajada de los precios de los productos petrolíferos, de ahí que no se puedan hacer comparaciones climáticas fiables.
    • Gas natural. Examinando el comportamiento de la UE-5 en el uso térmico estacional (excluido el eléctrico y el consumo hasta los niveles mínimos de la curva, que podrían atribuirse a la industria y al calentamiento de fluidos), se observa una característica variación con los grados-día [fig.8]. La diferencia de 2014 sobre 2013 denota una bajada del 22% en calefacción para los países seleccionados. El ahorro de gas natural estimado para la UE-28 debido a la suavidad del clima ronda 1.520.600 TJPCS (fidelidad del 96% con la curva anual de grados-día).
    • Electricidad. Al igual que ocurre con el gas natural, los picos de la generación eléctrica siguen de cerca la estacionalidad climática [fig.9]. En la UE-5, la producción casi coincidente con la demanda térmica descendió un 24% a lo largo de 2014 en comparación con la temporada anterior. El ahorro de electricidad estimado para la UE-28 debido a la suavidad del clima se aproxima a los 84.100 GWhE (fidelidad del 95% con la curva anual de grados-día). Comoquiera que esta cuantía equivale al 69% de los 122.000 GWh menos de producción térmica convencional registrados, se puede simplificar atribuyendo a las moderaciones estacionales el 69% de las reducciones de consumo final de combustibles fósiles para usos eléctricos, debiéndose el resto a la mayor producción con renovables y residuos. Esto es, el ahorro de combustibles fósiles destinados a la producción eléctrica en la UE-28 debido a la suavidad del clima se estima en 14.200 kt de hulla y antracita, 6.200 kt de lignitos y otros 227.700 TJPCS de gas natural.
Fig.8

Fig.8. Variación del uso térmico del gas natural y de los grados-día de calefacción. UE-5

Fig.9

Fig.9. Variación del uso térmico de la electricidad y de los grados-día de calefacción. UE-5

  1. CONCLUSIÓN. He tomado las mismas referencias que Eurostat para evaluar las emisiones de CO2 de las actividades de combustión de energía fósil. Los coeficientes de poder calorífico y los índices de emisiones han sido actualizados sobre el último informe de inventario de emisiones GEI de la UE. La economía de combustibles -gas natural, mayoritariamente- por la suavidad climática alcanza los 49.200 kilotoneladas equivalentes de petróleo [ktep]. Aplicados los factores de emisiones de CO2 y de oxidación a cada fuente, el ahorro de emisiones por menor uso de combustibles en la UE-28 debido a la bonanza invernal en 2014 se acerca a 134.900 ktCO2 [fig.10]. Este cómputo representa el 80,6% de la reducción de emisiones avanzada por Eurostat. Ello significa que la reducción de CO2 de la combustión fósil debida a parámetros no climáticos se acota en unos 32.500 ktCO2; esto es, que la disminución de emisiones se limita al 1% por factores ajenos a la temperatura (renovables, eficiencia, economía, precios).
Fig.10

Fig.10. Ahorro de emisiones de CO2 por la suavidad climática de 2014 en la UE-28

Desde la óptica técnica queremos alertar de que los titulares optimistas sobre las emisiones de 2014 en Europa basados meramente en los resultados estadísticos mostrados, sin entrar a valorar su carácter parcial y la importante incidencia de una meteorología benévola, son desacertados. Solicitamos se maticen los datos publicados y contextualice la responsabilidad de nuestro continente en las emanaciones mundiales de dióxido de carbono.

De otra manera, podría llevar a engaño el que un invierno menos riguroso y un verano más fresco en Europa repercutan favorablemente en la reducción absoluta de las emisiones, obviando

a) que el momento en que nos encontramos es resultado ya de un cambio climático exacerbado a nivel mundial que sufrirán más dramáticamente otras regiones,

b) que las emisiones de la industria y del transporte son prácticamente ajenas a la climatología y cualquier alza de estos sectores reduce la incidencia de las temperaturas,

c) que la creencia en una atemperación asentada providencialmente sobre nuestro continente puede relajar la concienciación sobre la eficiencia energética de edificios y equipamientos.

El ciudadano europeo podría especular ante los discursos triunfales que aún hay margen para el crecimiento, olvidar que en ese descenso de 8,8 a 7,4 toneladas equivalentes de CO2 por cabeza en veinte años se esconden en buena parte emisiones indirectas en países terceros debidas a la deslocalización de la producción de bienes que consume, ignorar que ya solamente su huella de carbono sobrepasa toda la capacidad biológica del continente.

La Unión Europea forma parte de los grandes responsables del efecto invernadero descompensado. Haber recortado eficazmente sólo 32,5 de las 29.000 MtCO2 anuales necesarias en el mundo para estabilizar el clima (DICE, 1994) es la viva muestra de cuán lejos nos encontramos del objetivo.

Anuncio publicitario

Eclipse solar e incidencia en las redes eléctricas europeas, I

El pasado mes de febrero, la red europea de gestores de redes de transporte de electricidad (ENTSO-E) publicaba una nota con el encabezado «20 March Solar Eclipse: An Unprecedented Test for Europe’s Electricity System» (Eclipse solar del 20 de marzo, una prueba sin precedentes para el sistema eléctrico europeo), del que se extrae el siguiente contenido:

Bajo un cielo claro matutino el 20 de marzo de 2015, unos 35.000 MW de energía solar, que equivalen a cerca de 80 plantas medianas de generación convencional, se desvanecerán poco a poco del sistema eléctrico de Europa para luego reinyectarse paulatinamente; todo, en el lapso de dos horas, mientras los europeos y sus oficinas comienzan un día normal de la semana ​laboral.
La gestión de este evento en la mayor red interconectada del mundo es un desafío sin precedentes para los operadores de transporte eléctrico europeos. Ya se han producido antes eclipses solares, pero con el aumento de instalaciones fotovoltaicas para generación de energía, el riesgo de un incidente puede ser serio sin las apropiadas medidas, como se señaló en el Winter Outlook Report de ENTSO-E el pasado mes de diciembre.

A la citada nota se adjuntaba una lista de preguntas más frecuentes (FAQ), con cuestiones como las siguientes:

Un eclipse solar no es comparable a un amanecer o un atardecer normales, por el hecho de que la velocidad de la variación es mayor que la de un orto o un ocaso. Ello afecta además a las prácticas operativas, como ocurre en medio de la mañana. Es como tener dos salidas y dos puestas de sol el mismo día.
Desde luego, en el pasado ya se han dado varias veces eclipses solares en Europa. El último se remonta a 1999. El eclipse de este año es diferente porque en los últimos diez años, la generación fotovoltaica ha aumentado drásticamente. Según las estadísticas europeas, la eenergía solar cubrió el 0,1% de toda la electricidad producida en Europa a partir de fuentes de energía renovables en el año 2002. Más de diez años después, esta cifra se ha elevado hasta el 10,5%. Ya solo en el área de Europa continental, la generación fotovoltaica cubre el 3% de todo el consumo de electricidad. Lo que hace del eclipse solar de este año algo tan especial es el hecho de haber ahora una cantidad nada despreciable de unidades de generación conectadas a la red altamente sensibles a las variaciones de radiación solar. Este eclipse solar será, pues, una prueba sin precedentes para el sistema eléctrico de Europa, y útil para comprender mejor la relación entre los ambiciosos objetivos de la UE y la seguridad de operación de la que dependen todos los europeos.
(…) Concierne directa o indirectamente a toda el área europea. El eclipse producirá efectos directos a diferentes niveles, al ser visible, desde Turquía hasta Groenlandia, y de España a Noruega. Indirectamente, afecta a todos los países de la región, debido a sus interconexiones.

 

Además de las FAQ, se enlazaba el análisis del impacto del eclipse solar, un documento técnico que estima la capacidad instalada por países, define la duración y oscurecimiento máximo del eclipse en 23 localidades de referencia, así como la radiación en condiciones de cielos despejados, y presenta recomendaciones para evitar incidentes de suministro. Podemos extraer lo siguiente:

En 2015, la potencia fotovoltaica instalada en la región sincronizada de Europa Continental se estima alcance 90 GW, y el eclipse podría causar una reducción de la alimentación fotovoltaica de más de 30 GW bajo condiciones de cielos despejados. Tal situación supondrá un serio desafío para la capacitación reguladora de los sistemas de electricidad interconectados en términos de capacidad disponible de gestión, velocidad de regulación y localización geográfica de reservas.
Aunque un eclipse solar es perfectamente predecible, la transformación de radiación solar en electricidad se asocia a incertitudes que requieren una cuidadosa coordinación en todo el sistema de interconexión de Europa continental, incluidos los adyacentes.
(…) Impacto total del eclipse solar en el sistema eléctrico de Europa Continental: Respecto a unas condiciones de cielos claros, la contribución fotovoltaica caería 34 GW a las 9:41 UTC (10:41 CET)
(…) Se espera una reducción del 50% de la alimentación [por sistemas solares] en Alemania, y para Italia supone un21%. Ello indica que el riesgo de sobrecarga de líneas debe tenerse en cuenta especialmente en esta región.
(…) No todos los gestores técnicos de los sistemas eléctricos quedarán afectados por el eclipse en la misma escala, pero todos deberán verificar el mismo impacto en la frecuencia; a algunos países no les incumben las variaciones fotovoltaicas, pero pueden apoyar a otros gestores suministrándoles reservas. El desafío principal para estos gestores será coordinar el uso de reservas con el fin de compensar la producción en tiempo real sin crear sobrecargas en la red.
La inyección fotovoltaica depende altamente de la nubosidad. Los resultados presentados en este informe suponen condiciones de cielos despejados que podrían no darse.

 

Un suceso mediático, una llamada a las precauciones, y una evaluación de impacto máximo. Eso es todo. Los técnicos no nos hemos alarmado. Por la hora y la estación en que se produce, por la progresión al norte menos soleado, por la inestable meteorología probable, por la previsibilidad del evento, por los gradientes de variación y por la potencia de reserva, el efecto nos parecía escaso para los sistemas eléctricos. Pero alguna prensa española -no muy amiga de las renovables- ha ido a lo suyo; titulares amarillistas, rimbombantes y con contenidos faltos de rigor, de coherencia y de calidad (algunos medios han calcado prácticamente las FAQ y toman datos precisos al MW, cuando la estimación de potencia se ha hecho por extrapolación) se han extendido por internet:

ABC «Ciencia» (25/02/2015): El eclipse de marzo pondrá en riesgo el suministro energético europeo. Según un nuevo estudio, las mayores dificultades las sufrirán las regiones que dependen en buena medida de la energía solar como Italia o Alemania (…) Este fenómeno de la naturaleza puede causar más de un quebradero de cabeza a los habitantes del viejo continente ya que –según un informe presentado por la Red Europea de Gestores de Redes de Transporte de Electricidad (Entsoe)- el tiempo que una Europa estará sin luz podría causar problemas de suministro eléctrico a aquellos que dispongan de determinadas fuentes de energía renovables (…) En base a los resultados obtenidos, la organización también considera factible que aquellos países con más dependencia de las energías renovables (principalmente Italia y Alemania) deberían ser apoyados por sus compañeros europeos. Y es que, a día de hoy este tipo de «combustible» no es acumulable. 

ABC, en su afán alarmista, además de ocultar que la bajada de producción citada sólo se daría con cielos claros en todo el continente, incorpora varias falsedades, como que Italia y Alemania son los países que más dependen de las renovables, o que ENTSO-E indique que los demás deben apoyarles con sus sistemas por el hecho de perder potencia solar.

ABC «Ciencia» (26/02/2015): «Los efectos reales del eclipse de marzo en la red eléctrica europea van a ser nulos». Los expertos consultados por ABC afirman que Europa no sufrirá cortes de energía el próximo día 20 por culpa de la oscuridad. Al haberse previsto con tanta antelación, no hay peligro de que Alemania o Italia se queden sin energía (…) En este sentido, el Director General de la UNEF considera también que estos «saltos energéticos» se producen habitualmente en las redes. «No sólo pasa cuando hay eclipses, suelen sucederse también cuando hay nubes, y nunca causan contratiempos», añade. Su opinión es también apoyada por Gabriel Sala –catedrático de la UPM y director del Instituto de Energía Solar, quien ha señalado a ABC que existen fuentes eléctricas de sobra para poder apoyar esta falta de luz: «Un eclipse equivale a una gran nube que tapará Alemania durante un breve espacio de tiempo, algo que suele suceder. Además, este “accidente” es fácil de solventar, ya que es mucho más previsible que una nube (la cual molesta lo mismo desde el punto de vista de la energía solar). Hay tantas fuentes de energía que simplemente se puede inyectar más en la red procedente del gas o de las centrales nucleares, las soluciones son muchísimas».

Bien, parecería que en ABC admitieron contrastar las noticias y quedarse con las opiniones de expertos, pero ante la proximidad del mediático acontecimiento prefirieron claudicar y publicar finalmente esto:

ABC «Ciencia» (17/03/2015): El eclipse solar del 20 de marzo provocará un desplome de la energía eléctrica. Como consecuencia de este fenómeno astronómico dejarán de producirse 35.000 megavatios de electricidad en la UE (…) «El 20 de marzo, en el supuesto de un cielo claro, se desconectarán progresivamente alrededor de 35.000 megavatios de energía solar, es decir, el equivalente a unos 80 centrales de generación de talla media». Afortunadamente esto sucederá durante el día, a primera hora de la mañana, según la latitud en la que se observe, entre nueve y 11, cuando la demanda de energía no está en su punto álgido, pero pondrá a prueba la capacidad de gestión de los operadores energéticos. Una situación en la que se detengan simultáneamente tantas centrales no se puede considerar un fenómeno normal.

Definitivamente, aun conociendo la previsión meteorológica a tres días vista y asumiendo finalmente que las condiciones no apuntaban a un gran efecto, en ABC demuestran un claro desconocimiento de los sistemas eléctricos, un desprecio por la coherencia profesional y que no están dispuestos a renunciar a titulares de agorero.

ABC eclipse 2015

Titulares de ABC respecto del eclipse del 20/03/2015 en el apartado Ciencia. Eso es coherencia…

 

En lugar del estilo de profeta fatídico, otros han optado por la hipérbole, definiendo como «plan de emergencia» lo que son meras recomendaciones propuestas (proposed recommendations, en el informe de ENTSO-E), contando como hechos excepcionales las corrientes operaciones de los gestores o bien, simplemente, ignorando cómo se gestionan las instalaciones de autoconsumo:

El Economista (15/03/2015): La UE diseña un plan de emergencia para evitar apagones por el eclipse. El eclipse solar del próximo 20 de marzo supondrá un reto para el sector eléctrico europeo. El fuerte crecimiento de la energía fotovoltaica puede suponer un quebradero de cabeza para los operadores técnicos del sistema que tendrán que afrontar una caída de la generación de hasta 33.501 MW solares -prácticamente la misma energía que consume España- frente a los 89.335 MW de potencia instalada fotovoltaica existente en Europa (…) Las salas de control de todos los operadores europeos permanecerán durante todo el eclipe interconectadas a fin de vigilar en todo momento la evolución y las contramedidas que puedan ser necesarias. En países como Alemania, existen cuatro operadores del sistema y no hay un control de la energía fotovoltaica instalada, ya que una parte importante corresponde a instalaciones de autoconsumo.

Y hay quien, además de dar gracias por los problemas e insistir en el caos y la emergencia, considera la energía solar, directamente, una amenaza, como Opinza en su noticia «Europa espera graves problemas de electricidad gracias al eclipse solar» (20/03/2015):

El eclipse solar que se vivirá esta semana en Europa ha generado mucha preocupación al sector eléctrico y compañías de varios países han coordinado planes de emergencia para combatir los problemas que se proyectan, especialmente en Alemania, España e Italia (…) El panorama caótico que quieren evitar las autoridades se da ante la amenaza que representa la energía solar que es 100 vez más utilizada que en el último eclipse solar registrado en 1999.

Hemos repasado la información y la desinformación previas al eclipse. En el siguiente post analizaremos las consecuencias en los sistemas de gestión de la demanda.

Los media y esos titulares sobre energía, I

El 12 de noviembre de 2014 salió a la luz el informe World Energy Outlook 2014 de la I.E.A.  y poco tardaron algunos medios en interpretar a su guisa la Hoja Informativa y el Resumen Ejecutivo. Tituló, por ejemplo, El Mundo (13/11/2014): «España, cuarto país del mundo que más gastó en subsidios a las renovables en 2013» noticia desarrollada como sigue:


«España sigue ocupando una posición top a nivel mundial en el ranking de las ayudas a la generación eléctrica con energías renovables a pesar de los continuos recortes regulatorios padecidos por el sector en los últimos años. El país es el cuarto con mayor número de subsidios verdes al contabilizar un volumen aproximado de 6.400 millones de euros en 2013, sólo superado por Alemania (17.600 millones), Estados Unidos (12.400 millones) e Italia (11.350 millones). Así se desprende del World Energy Outlook 2014 publicado ayer por la Agencia Internacional de la Energía (AIE).(…) China, inmediato perseguidor con un volumen de ayudas a renovables de 5.800 millones de euros en 2013. El organismo internacional destaca que sólo entre los cinco países mencionados acaparan un 70% de un importe a nivel mundial de 97.300 millones de euros».


Vaya, vaya. Un país que apenas llega al 0,66% de la población mundial, concediendo el 6,6% global (6.400 / 97.300) de las ayudas, subsidios, subvenciones a las instalaciones de energías renovables…

No pedimos al diario recordar a sus lectores que se trata de fuentes locales y diversificadas pero sí que, como primer ejercicio de honestidad, defina esa cuantía como primas pagadas por los consumidores eléctricos, no por el Estado, su regulador ¿O es que pretenden hacer creer que el dinero sale del erario público?

Pero analicemos la información. La traducción del párrafo del resumen ejecutivo (página 3) es la siguiente:

«Las primas mundiales a las renovables alcanzaron 121.000 millones de dólares en 2013, un 15% más que en 2012, y crecerán hasta cerca de 230.000 M$ en 2030 según el Escenario de Nuevas Políticas, para bajar a 205.000 M$ en 2040 debido a la finalización de los compromisos de apoyo para la capacidad recientemente desarrollada. En 2013, casi el 70% de estas primas a las renovables eléctricas se concedieron en solamente cinco países: Alemania (22.000 M$), EEUU (15.000 M$), Italia (14.000 M$), España (8.000 M$) y China (7.000 M$)».

Como es evidente, la suma de las primas en Alemania, EEUU, Italia, España y China es de 66.000 millones de dólares, cifra equivalente al 70% de 94.000 millones, que serían los incentivos globales a las energías renovables eléctricas, no sobre los 121.000 millones de todas las tecnologías renovables, tanto eléctricas como térmicas. Esto es, esos 47.750 millones euros ¿al cambio de cuándo? de los cinco primeros NO son «un 70% de un importe a nivel mundial de 97.300 millones de euros», como redacta el periodista.

Pero no es este error lo que más llama la atención; la cuestión es el titular: «cuarto país del mundo que más gastó en subsidios a las renovables». En plena crisis, faltó decirle al lector. Seguramente también estemos en los primeros puestos mundiales de otros muchos gastos, ayudas, bonificaciones o subsidios, tanto a actividades productivas como a otras que no lo son tanto, como el fútbol, la iglesia o los toros.

Y es que los números absolutos no sirven para nada si no se relacionan con el sujeto. ¿Y si fuera España cuarta potencia mundial tambien en producción eléctrica renovable? El titular se desinflaría, tanto si se redactó para enaltecer el sistema de primas como para denostarlo.

Pues bien, de hecho, es así. En el BP Statistical Review 2014 se muestra (página 38) cómo en 2013 España fue el cuarto país en consumo de energías primarias renovables no hidráulicas, tras EEUU, China y Alemania. Asimismo, el informe Renewables Energy 2014 Global Status Report, publicado por REN21, presenta (página 16) cómo España fue en 2013 el cuarto país en capacidad absoluta y por habitante de electricidad renovable no hidráulica.

 

NUCLEAR

Por si fuera poco, en el mismo texto de El Mundo se hace una referencia a la energía nuclear de una manera que parecería imprescindible frente a una insuficiencia renovable:


«El auge de las renovables no será suficiente para cubrir un incremento de la demanda energética a nivel mundial del 37% en los próximos 30 años (…). En este sentido, el informe prevé un incremento del 60% de la capacidad para producir energía nuclear».


La traducción del párrafo del resumen ejecutivo (página 4) es la siguiente:

«Al acabar 2013, hubo 434 reactores comerciales funcionando en el mundo, con una capacidad total instalada de 392 GW. Las centrales nucleares suman hoy el 11% de la generación eléctrica mundial (…). En el Escenario de Nuevas Políticas, la participación de la energía nuclear asciende levemente al 12% para 2040. La capacidad de generación eléctrica crece un 60% hasta 624 GW en 2040, resultado de la adición de 380 GW nuevos y el cierre de 148 GW (…). La cantidad de combustible nuclear gastado que se haya producido (del cual una parte significativa se convierte en residuo de alta radiactividad) se duplica y más, alcanzando 705.000 toneladas en 2040″.

Y en la página 3 habíamos podido leer:

«La participación de las renovables en la generación eléctrica total sube del 21% en 2012 al 33% en 2040, absorbiendo casi la mitad del crecimiento en la producción. La generación renovable, incluida la hidráulica, prácticamente se triplica entre 2012 y 2040, adelantando al gas como segunda mayor fuente de generación en los primeros años, y sobrepasando al carbón como primera fuente a partir de 2035″.

O sea, que se ha omitido la información de que la energía nuclear apenas contribuye a la producción eléctrica prevista y sigue siendo testimonial en las políticas energéticas, en comparación con las demás fuentes, y se obvia el aumento de los residuos radiactivos.

Ya en el pasado, en otros medios y sobre otros informes de la IEA, se ha pretendido afirmar que las emisiones mundiales de CO2 se reducían gracias a la energía nuclear, escondiendo su escasa contribución y callando que la enorme mayoría de las reducciones se basaban en el ahorro y la eficiencia energética.

 

FOSILES

Aunque eso no es todo respecto al WEO2014. En la página 4 del Resumen Ejecutivo, como en otras ocasiones, se advierte:

«Las subvenciones a los combustibles fósiles sumaron un total de 550 000 millones USD en 2013 –más del cuádruple de las subvenciones a las energías renovables– y están frenando las inversiones en eficiencia energética y en renovables».

En términos unitarios, por toneladas equivalentes de petróleo de energía primaria, si las «subvenciones» a las renovables en el mundo supusieron 106 $/tep, las dedicadas a las fósiles alcanzaron los nada despreciables 50 $/tep.

Ni rastro, claro, en algunos media de este «detalle» bien clarito y en castellano.

 

 

 

Aprovechamiento solar en la Unión Europea

Sabemos que Alemania, cuyo PIB ronda los 3,6 billones de dólares y que alberga 81 millones de habitantes, es un «campeón» de los sistemas activos de energía solar fotovoltaicos y térmicos. En efecto, con 36.000 MWp de paneles fotovoltaicos y 12.000 MWt de paneles solares térmicos acumulados hasta 2013, encabeza la lista europea bien lejos de los segundos; tanto es así que, en el caso de la fotovoltaica, llega a presentar también el mayor ratio de potencia instalada por habitante. Si comparamos sus resultados con España, Alemania dispone de casi ocho veces nuestra potencia fotovoltaica y cuadruplica los MWp/hab, quintuplica nuestra potencia térmica solar y triplica los MWt/hab. Todo ello, aun recibiendo un 35% menos de radiación. Evidentemente, aunque por esta menor insolación precisa una mayor superficie de captación para la misma producción de energía, los factores de comparación corregidos siguen siendo, de largo, impresionantes.

Lo que no suele emplearse en las estadísticas es el aprovechamiento solar; esto es, un parámetro que relacione las capacidades instaladas con la radiación solar media en un país. Un mayor ratio, por tanto, será indicador de un fuerte aprovechamiento de la energía solar, una elevada conversión de esta radiación en electricidad o en calor. Pues bien, es posible estimar ese aprovechamiento solar en la UE a partir de los datos de energía solar fotovoltaica y de energía solar térmica y termoeléctrica publicados por Eurobserv’ER, respecto de la radiación solar global horizontal definida por la aplicación SolarGIS.

Mapa SolarGIS de radiación solar global horizontal horizontal en la banda europea central y meridional

Mapa SolarGIS de radiación solar global horizontal horizontal en la banda europea central y meridional

Puesto que en el citado mapa no aparecen los países nordeuropeos, podemos limitarnos a calcular cómo en la banda central y meridional europea la radiación solar incidente sobre el suelo supera los 7.200 PWh anuales, lo que equivale a la energía primaria necesaria para alimentar 300.000 reactores nucleares tipo. La radiación media anual en esa área resulta ser de 1.280 kWh/m² (uRGH), desde los 916 de Irlanda hasta los 1.850 de Chipre.

  • España: 1.650 uRGH
  • Grecia: 1.600
  • Italia: 1.475
  • Francia: 1.260
  • Austria: 1.170
  • Alemania: 1.070
  • Polonia: 1.065
  • Bélgica: 1.050
  • Reino Unido: 925

Este concepto de aprovechamiento solar puede servir para determinar cuánto o cuan poco uso activo de este recurso natural hacen los países, y para reclasificarlos no en función de la capacidad absoluta o de la potencia por habitante, sino en base a la oportuna captación de la citada fuente energética:

1. Aprovechamiento mediante sistemas solares fotovoltaicos

mapasolar-fv

Si creyó usted, por ejemplo, que España hace un mejor aprovechamiento físico de la energía solar que Francia mediante fotovoltaica, por el mero hecho de encontrarse delante en las listas anteriores, no estaba en lo cierto: Hay instalados 2,8 MWp (ES) contra 3,7 (FR) por unidad de radiación. Corrigiendo en base a la producción (se necesita 1,3 veces más potencia en Francia para generar la misma energía), están empatados.

Alemania aprovecha el sol doce veces mejor que España para producir electricidad de origen fotovoltaico (x8, si consideramos una producción equivalente). De equipararse al aprovechamiento alemán, el sistema español habría de tener instalados hoy 55.600 MWp en lugar de 4.700.

  • Alemania: 33,7 MWp / uRGH
  • Italia: 12,0
  • Francia: 3,7
  • Reino Unido: 3,0
  • España y Bélgica: 2,8

2. Aprovechamiento mediante sistemas solares térmicos mapasolar-st

Si tenía usted la idea de que el aprovechamiento físico español de la energía solar con sistemas solares térmicos era superior frente al francés, dado que se sitúa por delante en las listas de capacidad absoluta y relativa por habitante, no lo dé por seguro: Hay empate a 1,4 MWt por unidad de radiación. Salvo que en este caso, con la corrección por la generación (simplificada, sin considerar las temperaturas), Francia debería tener instalados 1,8 MWt / uRGH para igualar a España.

Alemania aprovecha el sol ocho veces mejor que España para producir calor de origen termosolar (x5, si consideramos una producción equivalente). Para alcanzar el aprovechamiento alemán, el parque solar térmico español debería contar con unos 18.600 MWt frente a los 2.200 actuales.

  • Alemania: 11,3 MWt / uRGH
  • Austria: 3,0
  • Italia y Grecia: 1,8
  • España y Francia: 1,4
  • Polonia: 1

3. Aprovechamiento mediante sistemas solares termoeléctricos mapasolar-ts

En este tipo de instalaciones, sin duda alguna, en España se da un enorme aprovechamiento de la radiación solar frente a los demás países. La potencia termosolar acumulada respecto de la insolación multiplica por 350 el ratio de Italia.

Respaldo térmico, I

Entre ciertas soflamas anti-renovables se encuentra la aseveración de que las fuentes eólica y solar provocan una duplicación del consumo de gas en las centrales de ciclo combinado. Estas atribuciones se basan en dos grandes errores de concepto:

  1. Confunden el factor de operación o las horas equivalentes con el rendimiento de la central, esto es, creen que por el mero hecho de que la producción de una central concebida para 6.000 horas anuales se reduzca a la mitad, el rendimiento térmico vaya a seguir el mismo camino y, por ende, el consumo y las emisiones se dupliquen.
  2. Consideran que solamente las renovables no gestionables inciden en la carga de las CTCC y que éstas son únicas garantes de su respaldo, obviando que las mismas son más bien flexibles a los cambios de demanda, y que hay multitud de centrales capaces de responder a las fluctuaciones climáticas de una manera inmediata y fiable gracias al CECRE.

Basta con obtener para la Península los datos oficiales de REE sobre producción de energía eléctrica y los del MINETUR sobre consumo de combustible en centrales termoeléctricas para desbaratar tales imputaciones.

CTGN-EOL_horas

Con datos reales, desde 2000 hasta 2011 la penetración de eólica y solar en el sistema generador español ascendió del 2 al 19% de participación, mientras que el consumo de gas natural en las centrales térmicas se situó de forma variable entre 1,46 y 1,64 millones de termias por cada GWh eléctrico que generaron. Esto es, estas renovables aumentaron más de 8 veces su peso en la red, mientras que el consumo del gas sólo ascendió un 12%.

Sobre el parámetro de las horas equivalentes de funcionamiento, habría incoherencias entre el prolongado funcionamiento de 2006 y un pico de consumo de gas, y si acaso se quiere advertir un ligero aumento al final de la serie, se explica por un buen año hidráulico (2010) y porque el carbón entró de nuevo en escena de la mano ministerial (2011).

 

Como se evidencia, no hay verdadera correlación entre el peso de eólica y solar y el consumo y emisiones de las CTCC en un sistema tan complejo como el peninsular español.

 

Al hilo: El mito del respaldo térmico a la eólica, o cómo obviar la demanda

De interés: Effects of wind intermittency on reduction of CO2 emissions: The case of the Spanish power system