¿Fiasco fotovoltaico, o infundio analítico?

Leo en el blog de Carlos Rebato una -califico tras analizarla- desafortunada publicación, titulada:

El “futurista” carril-bici solar de Ámsterdam es en realidad un fiasco

Bueno, en realidad el autor le debe mucho -casi todo- en esa entrada a un friki de los coches que escribe en Jalopnik con aires de autoridad en la materia, prefiriendo encabezar con:

That Fancy New Solar Bike Path In Amsterdam Is Utter Bullshit

(El maravilloso nuevo carril-bici de Ámsterdam es una absoluta mierda)

La cuestión es que en noviembre de 2014 abrió en fase de pruebas, que durarán tres años, el primer carril-bici solar en la localidad de Krommenie, en Países Bajos, que cuenta con uno existente cuyo pavimento ha de ser sustituido. El diseño cuenta con dos vías, una con distintos pavimentos de ensayo y otra de 1,5 m con paneles solares integrados protegidos por vidrio templado de 10 mm de espesor, cuya producción eléctrica se vierte a la red. El tramo-test, de 70 metros de longitud y que se extenderá a 100 metros, está construido con losas prefabricadas de hormigón de 3,5 m de ancho por 2,5 m de largo. La capa protectora de un módulo sufrió una rotura en diciembre y ha sido reparada. Es el primer prototipo concebido por SolaRoad, consorcio que ha contado con 3,5 M€ de financiación tanto para el proyecto SolaRoad como para otro más ambicioso, como los autobuses eléctricos, y ha invertido cinco años en investigación y desarrollo.

Me explico aquí puesto que mi comentario en su blog parece estar condenado al purgatorio de los pendientes de moderación.

Venía a decir que estoy de acuerdo en que hay que buscar la eficiencia, que no invertiríamos por el alto mantenimiento y por los riesgos de alterabilidad de este sistema a lo largo de los años, como se ha visto, pero que tampoco hay que ensañarse embrollando las cifras y debemos ser un poco serios:

1. PRODUCCIÓN

Los resultados, publicados por SolaRoad tras ese primer medio año de pruebas, son de 3000 kWh para los 70 metros de carril instalado, suficiente como para abastecer las necesidades energéticas de una casa pequeña durante un año. “Si lo trasladamos a una escala anual, esperamos que puedan producirse 70 kw por hora y metro cuadrado. Los resultados son muy superiores a lo esperado” aseguró la compañía en el momento. Las estimaciones iniciales, de acuerdo con SolaRoad, eran de 50 kW por metro cuadrado y año.

Las mediciones de 3.000 kWh a las que se enlaza presentan una curva de noviembre 2014 a abril 2015, un semestre invernal:

Producción de electricidad desde la puesta en marcha. SolaroadProducción de electricidad desde la puesta en marcha. SolaRoad Netherlands

70 metros de longitud de carril x 1,75 de anchura de carril = 122, 5 metros cuadrados. 3000 kWh en 6 meses x 122,5 m cuadrados = 24,5 kWh por metro cuadrado en 6 meses. 24,5 kWh por metro cuadrado en 6 meses x 2 = 49 kWh al año.

49 kWh es, irónicamente, lo que SolaRoad esperaba obtener en primer lugar. Y eso si no nos atenemos a los cambios estacionales, no se irradia la misma cantidad de luz solar a lo largo de los diferentes meses del año.

Según los datos de la NASA para la situación de Krommenie:

  • La media de radiación horizontal de noviembre a abril (semestre analizado) es de 1,7 kWh/m2/día.
  • La media de radiación horizontal de mayo a octubre es de 4,3 kWh/m2/día, un 250% respecto del semestre analizado.

No se trata de dos semestres idénticos. Y precisamente el medido es el de menor insolación; este parámetro esencial parece haber pasado desapercibido para los hachas de los cálculos.

Esos 70 kWh/m2/año que espera SolaRoad por 122,5 m2 son 8.575 kWh/año.
Esos 8.575 kWh esperados menos los 3.000 kWh medidos dan 5.575 kWh estimados para el semestre más soleado. Un 85% más de producción de mayo a octubre respecto de noviembre a abril, aunque éste hubiera sido más soleado de lo normal, resulta perfectamente posible.
No siempre se van a dar las condiciones de limpieza y arbolado desnudo del primer semestre como afirma el marketing, pero no es descabellado.

2. COMPARACIÓN

La cosa empeora. Cuando se compara (más datos aquí y aquí) contra estaciones solares cercanas, y haciendo cálculos que tienen en cuenta las variaciones estacionales, la salida total al año es de 100 kWh al año. El doble.

No sólo eso, los paneles solares que se colocan en tejados están orientados de un modo específico para maximizar la luz solar que son capaces de captar.

Las comparaciones hechas en EEVblog con esas tres instalaciones cercanas inclinadas 20, 28 y 30 grados y sin sombras, aparte de evidentes, son injustas con la horizontalidad general del carril-bici y con el rendimiento de las células: La sola diferencia por el ángulo supone un incremento del 13 al 17% en la radiación solar media anual. Pero además, mientras las instalaciones citadas están realizadas con silicio policristalino (eficiencias de 14%15%) y monocristalino (16%) e incorporan estupendos inversores, los módulos de SolaRoad llevan revestimiento transúcido y son de silicio amorfo, con eficiencias que rondarán del 6 al 9%:

Luwte (p-Si, 20º): 743 kWh de noviembre a abril / 16,3 m2 = 45,6 kWh/m2
MK1o2 (p-Si, 28º): 681 kWh de noviembre a abril / 17,5 m2 = 38,9 kWh/m2
Gadgetfrank (m-Si, 30º): 812 kWh de noviembre a abril / 16,5 m2 = 49 kWh/m2

Gadgetfrank 2 (m-Si, 25º, sombras): 255 kWh noviembre – abril / 6,5 m2 = 39,3 kWh/m2
SolaRoad (a-Si, 0º): 3.000 kWh de noviembre a abril / 122,5 m2 = 24,5 kWh/m2

En este punto, debe aclararse que un daño en uno de los 28 módulos no menoscaba todo el sistema, sino que reduce un 4 – 5% la producción en tanto no se repare. En este caso, al parecer el vidrio templado ha quedado afectado por retracciones térmicas.

3. COSTE Y MANTENIMIENTO

La compañía no ha facilitado datos con los costos de instalación por metro cuadrado pero no tiene que ser precisamente baratos. Y no más baratos, en cualquier caso, que una instalación de paneles solares tradicional.

Estos paneles además, como vimos cuando hablamos del rentabilidad energética con las baterías de Tesla, se instalan con una amortización en mente. Una amortización que puede prolongarse hasta 10 años (…) En el caso de SolaRoad no es sólo que eso no ocurra sino que además obvia los costes mencionados de: mantenimiento, instalación, cuidado y reparaciones, costes que probablemente multipliquen en varios exponentes el precio final.

Bastaba con leer en la FAQ de SolaRoad, que el propio bloguero enlaza, lo siguiente:

“En la fase actual de desarrollo es demasiado pronto para hacer afirmaciones fiables sobre [costes por metro cuadrado y costes comparativos con construcciones ordinarias]. El punto de partida para el desarrollo es que el balance de costes y beneficios de la vida útil sea positivo, comparado con las superficies de viales existentes (…)”.

“El estudio de viabilidad técnico-económica indica que es posible lograr un retorno de la inversión dentro de una vida útil de 20 años. Aparte hay que decir que la producción, gestión y mantenimiento de este nuevo tipo de vía están aún por optimizar. Eventualmente, nuestro objetivo es un período de retorno de 15 años o menos“.

“En el desarrollo de SolaRoad, el punto de partida es que SolaRoad reúna los mismos requisitos que los tipos de pavimento convencionales. Durante los estudios actuales, asumimos regímenes de mantenimiento normales. Conforme a las expectativas aún cabe optimización, en la que se integrará el mantenimiento de los sistemas técnicos”.

Esto es, que el consorcio integrado por industriales, institutos y autoridades ha tenido evidentemente en cuenta los costes de mantenimiento y la rentabilidad.

Pero no está tan claro que el pavimento fotovoltaico, de células de silicio amorfo adheridas y protegidas con vidrio templado, resulte más caro que un tejado de paneles cristalinos sobre soporte anti-robo.

En cuanto a los costes materiales, puesto que el a-Si ronda los 800 $/kWp (53 €/m2) y el vidrio templado de 10mm cuesta 35 €/m2, el conjunto suma 88 €/m2 frente a los 1.400 $/kWp (156 € /m2) alcanzados por el p-Si. Con una producción anual de 70 kWh/m2 para el silicio amorfo en suelo y de 120 kWh/m2 para el cristalino en tejado, el coste de la inversión en material, repartida a lo largo de 15 años, será de 8,4 c€/kWh para el primer caso y 8,7 c€/kWh para el segundo.

Por la extensión del carril pueden estimarse 10 kWp – 9 kW, cuyo coste en material fotovoltaico sin IVA habrá rondado los 11.000 – 12.000 €.

Por otro lado, el silicio amorfo puede presentar una menor tasa de retorno energético que los cristalinos.

4. FINANCIACIÓN Y RENTABILIDAD

SolaRoad es una empresa con fondos públicos y privados que ha recibido la friolera de 3,5 millones de euros por parte de la Unión Europea.

En Holanda el precio medio del kWh al año es de 0,12 euros (12 céntimos). Ateniéndonos a los datos proporcionados tras los 3000 kWh en 6 meses (6000 kWh al año), eso supone un ahorro de unos de 720 euros al año. Pongamos que han usado un, comedido, 20% de ese dinero, 640.000 euros:

640.000 euros/720 euros al año: aproximadamente 888 años

Hace 888 años ni siquiera habíamos descubierto América. Los números tampoco salen con otros porcentajes, un 10% son 540 años, un 5% 222, incluso aunque se hubiesen dejado sólo un 1% (32.000 euros, una cifra ridícula), todavía se tardaría medio siglo en amortizar. Sin contar con costes de reparación y mantenimiento, por supuesto.

Según algunos cálculos, para que fuese rentable el metro cuadrado debería costar unos $7 dólares (y mantenimiento aparte). A día de hoy ese número está muy lejos de poder ser una realidad.

Publius Ixxii [usuario ‘escéptico’ sobre el cambio climático y el CO2]: “En el centro oeste de EEUU se pueden adquirir 70 kWh por menos de 7 dólares al detalle. Para que esto tuviera una oportunidad de viabilidad económica, los costes amortizados de instalación inicial, sustitución futura (descontada con un ratio prorrateado) y costes de mantenimiento periódico tendría que resultar en algún lugar del vecindario a 7 dólares por metro cuadrado. Me resulta difícil creer que en algún momento sea posible presentar una cifra tan baja (…)”.

Es falso que SolaRoad se haya financiado con 3,5 millones de euros de la UE. El proyecto, presentado en Interreg-IVb, es uno de los cuatro del gobierno de Holanda Septentrional, que obtuvieron casi medio millón de euros comunitarios:

“La provincia puso en marcha cuatro proyectos en el ámbito del transporte eléctrico.
Se trata de la investigación sobre el uso de renovables para la energía del transporte público, la realización de estaciones de transferencia fuera de la ciudad y una red de estaciones de carga rápida, así como un centro de conocimiento. Además de la investigación sobre los dilemas administrativos en la transición a la movilidad eléctrica.
Para estos proyectos se dispone una cantidad de 900.000 euros, habiendo recibido el Consejo Ejecutivo una subvención de 450.000 euros del programa europeo Interreg. El proyecto E-movilidad europea es un programa donde once regiones de siete países trabajan juntas para promover los vehículos eléctricos”.

La inversión de 3,5 millones de euros -de los cuales 1,5 han sido aportados por las autoridades locales– se destina a todo un proceso de investigación y desarrollo, obra civil, monitorización, mantenimiento e instalación solar, como declara SolaRoad:

“Los 3,5 millones de euros fueron invertidos por los diversos socios en el proceso de investigación y desarrollo, que ha llevado cinco largos años. El carril de ensayo en Krommenie solamente representa una pequeña parte. Optamos conscientemente por un proyecto piloto de corta longitud y que generara una pequeña cantidad de energía (electricidad equivalente a unas tres viviendas). Ello es suficiente para generar una gran cantidad de información práctica con bajos costes de ensayo de manera que podamos reservar la mayor parte de los fondos disponibles para convertir SolaRoad en un producto comercializable”.

Por otra parte, el autor considera que 32.000 euros es una cifra ridículamente baja para construir un carri-bici de 70 metros, ignorando que una única vía -en este caso hay dos- de carril-bici de hormigón tipo “5-foot wide concrete sidewalk with concrete curb” puede costar 206 $/ft (600 €/m) ella solita. Una inversión que se debe al tráfico, no al sistema accesorio de energía.

Y por si fuera poco, también es falso que en Holanda el precio medio del kWh sea de 12 c€. El cliente doméstico tipo pagó 14,7 c€/kWh sin IVA ni otros impuestos en 2014.

La fotovoltaica convencional en los Países Bajos se encuentra cerca de la paridad con la red. ¿Como se puede afirmar que sólo hay rentabilidad con costes inferiores a 7 $/m2, con o sin mantenimiento?

Generando, como se espera, 8.575 kWh/año durante 15 años en paridad con la red se habrán “ahorrado” (yo también sé hacer las cuentas de la vieja) 19.000 euros. En teoría es rentable respecto del coste material, asumiendo que la mayor parte de la mano de obra de instalación se debe al carril y no a los módulos.

5. CONCLUSIÓN

La empresa aclara que el coste de esta primera fase supone una pequeña parte del monto de la financiación y que sus objetivos económicos son una tasa de retorno de 15 años.  Es falaz atribuir a este tramo piloto la inversión entera, o siquiera un 20%, y jugar a calcular un hipotético coste del kWh, obviando que la costosa obra civil tiene un uso de tráfico -apto para camiones de bomberos- con o sin fotovoltaica. Es tan absurdo como incluir en el precio del kWh el coste de una casa solar que integra en su tejado paneles solares. ¿Por qué no hacer lo mismo entonces con las pérgolas solares del carril-bici sudcoreano que los detractores presentan como alternativa válida?

Con todo lo anterior, no pretendo justificar el proyecto ni considerar que el sistema es el adecuado, sino solamente ser más justo con los análisis y la atribución de costes. Examinar en lugar de presuponer.

Carril-bici existente en septiembre 2014. Google Maps

Carril-bici existente en septiembre 2014. Google Maps

Carril-bici existente en septiembre 2014. Street View

Carril-bici existente en septiembre 2014. Street View

Aprovechamiento solar en la Unión Europea

Sabemos que Alemania, cuyo PIB ronda los 3,6 billones de dólares y que alberga 81 millones de habitantes, es un “campeón” de los sistemas activos de energía solar fotovoltaicos y térmicos. En efecto, con 36.000 MWp de paneles fotovoltaicos y 12.000 MWt de paneles solares térmicos acumulados hasta 2013, encabeza la lista europea bien lejos de los segundos; tanto es así que, en el caso de la fotovoltaica, llega a presentar también el mayor ratio de potencia instalada por habitante. Si comparamos sus resultados con España, Alemania dispone de casi ocho veces nuestra potencia fotovoltaica y cuadruplica los MWp/hab, quintuplica nuestra potencia térmica solar y triplica los MWt/hab. Todo ello, aun recibiendo un 35% menos de radiación. Evidentemente, aunque por esta menor insolación precisa una mayor superficie de captación para la misma producción de energía, los factores de comparación corregidos siguen siendo, de largo, impresionantes.

Lo que no suele emplearse en las estadísticas es el aprovechamiento solar; esto es, un parámetro que relacione las capacidades instaladas con la radiación solar media en un país. Un mayor ratio, por tanto, será indicador de un fuerte aprovechamiento de la energía solar, una elevada conversión de esta radiación en electricidad o en calor. Pues bien, es posible estimar ese aprovechamiento solar en la UE a partir de los datos de energía solar fotovoltaica y de energía solar térmica y termoeléctrica publicados por Eurobserv’ER, respecto de la radiación solar global horizontal definida por la aplicación SolarGIS.

Mapa SolarGIS de radiación solar global horizontal horizontal en la banda europea central y meridional

Mapa SolarGIS de radiación solar global horizontal horizontal en la banda europea central y meridional

Puesto que en el citado mapa no aparecen los países nordeuropeos, podemos limitarnos a calcular cómo en la banda central y meridional europea la radiación solar incidente sobre el suelo supera los 7.200 PWh anuales, lo que equivale a la energía primaria necesaria para alimentar 300.000 reactores nucleares tipo. La radiación media anual en esa área resulta ser de 1.280 kWh/m² (uRGH), desde los 916 de Irlanda hasta los 1.850 de Chipre.

  • España: 1.650 uRGH
  • Grecia: 1.600
  • Italia: 1.475
  • Francia: 1.260
  • Austria: 1.170
  • Alemania: 1.070
  • Polonia: 1.065
  • Bélgica: 1.050
  • Reino Unido: 925

Este concepto de aprovechamiento solar puede servir para determinar cuánto o cuan poco uso activo de este recurso natural hacen los países, y para reclasificarlos no en función de la capacidad absoluta o de la potencia por habitante, sino en base a la oportuna captación de la citada fuente energética:

1. Aprovechamiento mediante sistemas solares fotovoltaicos

mapasolar-fv

Si creyó usted, por ejemplo, que España hace un mejor aprovechamiento físico de la energía solar que Francia mediante fotovoltaica, por el mero hecho de encontrarse delante en las listas anteriores, no estaba en lo cierto: Hay instalados 2,8 MWp (ES) contra 3,7 (FR) por unidad de radiación. Corrigiendo en base a la producción (se necesita 1,3 veces más potencia en Francia para generar la misma energía), están empatados.

Alemania aprovecha el sol doce veces mejor que España para producir electricidad de origen fotovoltaico (x8, si consideramos una producción equivalente). De equipararse al aprovechamiento alemán, el sistema español habría de tener instalados hoy 55.600 MWp en lugar de 4.700.

  • Alemania: 33,7 MWp / uRGH
  • Italia: 12,0
  • Francia: 3,7
  • Reino Unido: 3,0
  • España y Bélgica: 2,8

2. Aprovechamiento mediante sistemas solares térmicos mapasolar-st

Si tenía usted la idea de que el aprovechamiento físico español de la energía solar con sistemas solares térmicos era superior frente al francés, dado que se sitúa por delante en las listas de capacidad absoluta y relativa por habitante, no lo dé por seguro: Hay empate a 1,4 MWt por unidad de radiación. Salvo que en este caso, con la corrección por la generación (simplificada, sin considerar las temperaturas), Francia debería tener instalados 1,8 MWt / uRGH para igualar a España.

Alemania aprovecha el sol ocho veces mejor que España para producir calor de origen termosolar (x5, si consideramos una producción equivalente). Para alcanzar el aprovechamiento alemán, el parque solar térmico español debería contar con unos 18.600 MWt frente a los 2.200 actuales.

  • Alemania: 11,3 MWt / uRGH
  • Austria: 3,0
  • Italia y Grecia: 1,8
  • España y Francia: 1,4
  • Polonia: 1

3. Aprovechamiento mediante sistemas solares termoeléctricos mapasolar-ts

En este tipo de instalaciones, sin duda alguna, en España se da un enorme aprovechamiento de la radiación solar frente a los demás países. La potencia termosolar acumulada respecto de la insolación multiplica por 350 el ratio de Italia.